Eigenvalue Bounds Versus Semidefinite Relaxations for the Quadratic Assignment Problem

نویسنده

  • Kurt M. Anstreicher
چکیده

It was recently demonstrated that a well-known eigenvalue bound for the Quadratic Assignment Problem (QAP) actually corresponds to a semideenite programming (SDP) relaxation. However, for this bound to be computationally useful the assignment constraints of the QAP must rst be eliminated, and the bound then applied to a lower-dimensional problem. The resulting \projected eigenvalue bound" is one of the best available bounds for the QAP, especially when considering the quality of bounds relative to the complexity of obtaining them. In this paper we show that the projected eigenvalue bound also corresponds to an SDP relaxation of the original QAP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem

We consider semidefinite programming relaxations of the quadratic assignment problem, and show how to exploit group symmetry in the problem data. Thus we are able to compute the best known lower bounds for several instances of quadratic assignment problems from the problem library: [R.E. Burkard, S.E. Karisch, F. Rendl. QAPLIB — a quadratic assignment problem library. Journal on Global Optimiza...

متن کامل

Improved semidefinite programming bounds for quadratic assignment problems with suitable symmetry

Semidefinite programming (SDP) bounds for the quadratic assignment problem (QAP) were introduced in: [Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite Programming Relaxations for the Quadratic Assignment Problem. Journal of Combinatorial Optimization, 2, 71–109, 1998.] Empirically, these bounds are often quite good in practice, but computationally demanding, even for relatively s...

متن کامل

Semidefinite Programming

3 Why Use SDP? 5 3.1 Tractable Relaxations of Max-Cut . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1.1 Simple Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.2 Trust Region Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.3 Box Constraint Relaxation . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.4 Eigenvalue Bound . . . . . . . . . . . . ...

متن کامل

On semidefinite programming bounds for graph bandwidth

We propose two new lower bounds on graph bandwidth and cyclic bandwidth based on semidefinite programming (SDP) relaxations of the quadratic assignment problem. We compare the new bounds with two other SDP bounds in [A. Blum, G. Konjevod, R. Ravi, and S. Vempala, Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems, Theoretical Computer Science, 235(1):25-42, 2000]...

متن کامل

Semidefinite relaxations of the quadratic assignment problem in a Lagrangian framework

In this paper, we consider partial Lagrangian relaxations of continuous quadratic formulations of the Quadratic Assignment Problem (QAP) where the assignment constraints are not relaxed. These relaxations are a theoretical limit for semidefinite relaxations of the QAP using any linearized quadratic equalities made from the assignment constraints. Using this framework, we survey and compare stan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2000